Effect of Waste Glass Powder as a Supplementary Cementitious Material on the Concrete Mix Properties

Assit. Proff. Dr. Abeer I. Alwared
Environmental Department/ Baghdad University/ Iraq
abeerwared@yahoo.com (Abeer I. Alwared)

Dr. Suhair K. A. Al-Hubboubi
Building Research Directorate / Ministry of Construction and Housing
suhairkah@yahoo.com (Suhair K. A. Al-Hubboubi)

Raghda Abedalnabi Rasen
raghadpear808@gmail.com (Raghda Abedalnabi Rasen)

Abstract

Glass is a non-biodegradable material; therefore landfills do not provide an environment friendly solution for waste glass. Hence, there is a great need for proper management of waste glass. In this study, a new application of waste glass powder as a supplementary cementitious material to produce high performance concrete was investigated. Grinded glass was added to concrete mix as partial replacement of cement at (5, 10, 15) % by weight. It was evaluated as a pozzolanic material in conjunction with high range water reducing admixture superplasticizer (HRWR). The compressive strength at the ages of 7, 28, 90, 150, 240 days were tested. The study confirmed that the use of 10 % of grinding glass improved the compressive, flexure strength of concrete by about (30, 11.64)% respectively at 240 days compared to reference concrete and decrease the permeability of water under presser by about 29.4% at 240 days. At the end of 300 days of partial submerge in 3.5% NaCl solution, the half-cell potential of steel embedded in reference and glass concrete were (-356 and-340) mV respectively. The results indicated that there is a possibility to prepare high performance concrete using grinded glass.

Key words: Grinded glass; Pozzolanic material; Strength properties; permeability; half-cell potential.
1. Introduction

The term sustainability has a plethora of definitions; however, almost all the definitions provided by researchers have commonalities which are synonymous with the term “green.” Green materials have the characteristics of less energy and resources and high performance ability. Concrete is one of the most vastly used building materials in the world [14].

On the other hand the production of cement is one of the major sources of CO₂ emissions in the world. An increase in cement content contribute with an increase in greenhouse gases emission, which is highly pertinent to global warming. Every ton of cement produced liberates about 1 ton of carbon dioxide [5], also the cement industry is responsible for almost 5% of the total global industrial energy consumption [20], this problems can be solved by the substitution of larger portions of the cement by supplementary cementitious materials, while maintaining its mechanical and durability properties [1].

Supplementary cementing materials (SCMs) improved the hydraulic activity for Portland cement through hydraulic activity; pozzolanic activity, or both. Chemical reaction between phases in the SCM and water are led to hydraulic activity, forming cementitious hydration products similar to those formed through hydration of Portland cement, while pozzolanic activity, which is characterized by the reaction between siliceous or alumino-siliceous material in the SCM with calcium hydroxide forming calcium silicate hydrate and other cementitious compounds. Calcium silicate hydrate is a more desirable hydration product and thus the pozzolanic reaction is considered to have a positive impact on the long-term properties of the hardened concrete [10].

The use of supplementary cementitious materials (SCMs) as a partial replacement of cement in concrete is a promising method for reducing the environmental impact from the industry. Several industrial byproducts have been used successfully as SCMs, including silica fume (SF), ground granulated blast furnace slag (GGBS) and fly ash [2], these materials are used to create blended cements which can improve concrete durability, early and long term strength, proved workability and economy [3].

Researches indicated that glass has a chemical composition and phase comparable to traditional SCMs [17]. The term glass contains several chemical diversities including soda-lime silicate glass, alkali-silicate glass and boro-silicate glass. In order to decrease environmental problems, glasses and its powder have been used
as a construction material. The coarse and fine glass aggregates could cause ASR (alkali-silica reaction) in concrete, but the glass powder could suppress their ASR tendency, an effect similar to SCMs. Therefore, glass is used as a replacement of supplementary cementitious materials [12]. It also helps in ceramic and bricks manufacture and it preserves raw materials, decreases energy consumption and volume of waste sent to landfill.

2. Literature Review

Meena and Singh (2012) were conducted a series of tests to study the effect of 15% and 30% replacement of cement by silica fume, fly ash and glass powder on compressive strength and durability in the form of capillary absorption. They concluded that 30% of glass powder of size less than 100µm shows a pozzolanic behavior and could be included as cement replacement in concrete without any unfavorable effect [12].

Vijayakumar et al. (2013) examined the possibility of using Glass powder as a partial replacement of cement for new concrete. Glass powder was partially replaced as 10%, 20%, 30% and 40% and tested for its compressive, Tensile and flexural strength up to 60 days of age and were compared with those of conventional concrete; from the results obtained, it is found that glass powder can be used as cement replacement material up to particle size less than 75µm to prevent alkali silica reaction [19].

Raju and Kumar (2014) studied the strength of concrete containing waste glass powder as a partial replacement of cement for concrete in the range of replacement 5% to 40% , they tested for compressive strength and flexural strength at the age of 7, 28 and 90 days and compared with those of conventional concrete. Results showed that replacement of 20% cement by glass powder was found to have higher strength [16].

Sharma (2015) studied the effect of 5%, 10% and 15% replacement of cement by glass powder on compressive strength and durability. The particle size effect was evaluated by using glass powder of size 600µm-100µm. The results shows that maximum increase in strength of concrete occurred when 10% replacement also the pozzolanic behavior of waste glass appears, if they ground finer than 600µm. The early consumption of alkalis by glass particles helps in the reduction of alkali-silica reaction hence enhancing the durability of concrete [18].

Jain et al. (2016) used glass powder in the range of 5% to 20% as replacement of cement and concrete cube, cylinder and beam strength compared with conventional concrete, and concludes that replacement of cement by glass powder in concrete
generally decreases the ultimate strength in 28 days curing of concrete [9].

The aim of this study focuses on the feasibility of using grinded glass of locally available construction waste for establishing economically-friendly and affordable green environment through evaluate its pozzolanic activity and check the suitability as partial replacement of cement to produce high performance concrete.

3. Methodology

The materials used in this study are locally available except the admixture.

Ordinary Portland cement conforming to IQS No. 5/1984 was used. Tables 1 and 2 represent the chemical and physical properties of the used cement respectively.

Natural sand of zone (1) conforming to IQS No.45/1980 was used as fine aggregate. Tables 3 and 4 show the gradation of the used fine aggregate and its chemical and physical properties. Crushed river gravel with 20 mm maximum size and properties conforming to Iraqi standards No.45/1984, Table 5 was used as coarse aggregate.

High range water reducing admixture (HRWR) super-plasticizer, known as (PC2000) complies with ASTM C 494 type G was used. Water/cement ratio was increased in order to increase the mechanical property and durability of concrete, it ranged from 0.5 to 1.5% of the cement weight. The properties of this admixture are listed in Table 6.

The waste glass was collected from recycled clear glass bottles, cleaned and then crushed using Jet mills machine. The grinded glass was sieved to the desired particle size, Fig. 1. the chemical and physical properties of waste glass are summarized in Tables 7 and 8 respectively.

X-ray diffraction test indicated that the glass powder has amorphous pattern Fig.2. The high peak represents silica Table 8 which is potentially pozzolanic when particle size is less than 75μm [4].

All the tests were carried out at the room temperature for one year, at the laboratory of concrete in the building research directorate. Each mixture consisted of cement (400 kg/m³); sand (750kg/m³); gravel (1035 kg/m³) and a w/c ranged between (0.41-0.50) and 1.2% HRWR by weight for reference mix and 1.4% for glass-concrete in order to achieve 50 MPa compressive strengths at 28 days. The slump was kept within the range (80-90) mm.
Table. 1 Chemical properties of cement

<table>
<thead>
<tr>
<th>Compound composition</th>
<th>Abbreviation</th>
<th>Percent by weight</th>
<th>Limit of IQS No.5/1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>CaO</td>
<td>62.73</td>
<td>-</td>
</tr>
<tr>
<td>Silica</td>
<td>SiO₂</td>
<td>20.41</td>
<td>-</td>
</tr>
<tr>
<td>Alumina</td>
<td>Al₂O₃</td>
<td>4.91</td>
<td>-</td>
</tr>
<tr>
<td>Iron oxide</td>
<td>Fe₂O₃</td>
<td>3.21</td>
<td>-</td>
</tr>
<tr>
<td>Magnesia</td>
<td>MgO</td>
<td>2.60</td>
<td>≤ 2.85%</td>
</tr>
<tr>
<td>Sulfate</td>
<td>SO₃</td>
<td>2.80</td>
<td>≤ 5%</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>L.O.I</td>
<td>3.17</td>
<td>≤4%</td>
</tr>
<tr>
<td>Insoluble residue</td>
<td>L.R</td>
<td>1.05</td>
<td>≤ 1.5</td>
</tr>
<tr>
<td>Lime saturation factor</td>
<td>L.S.F</td>
<td>0.93</td>
<td>0.66-1.02</td>
</tr>
</tbody>
</table>

Main compounds % by weight

<table>
<thead>
<tr>
<th>Name of compounds</th>
<th>Abbreviation</th>
<th>Percent by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tri calcium silicate</td>
<td>C₃S</td>
<td>49.57</td>
</tr>
<tr>
<td>Di calcium silicate</td>
<td>C₂S</td>
<td>21.36</td>
</tr>
<tr>
<td>Tri calcium aluminate</td>
<td>C₃A</td>
<td>7.58</td>
</tr>
<tr>
<td>Tetra calcium alumino ferrite</td>
<td>C₄AF</td>
<td>9.75</td>
</tr>
<tr>
<td>Free lime</td>
<td>-</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Table. 2 Physical properties of cement

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Limits of cement</th>
<th>Limits of IQS No. 5/1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fineness Blaine m²/kg</td>
<td>359.7</td>
<td>≥ 230</td>
</tr>
<tr>
<td>Initial setting time (h:min)</td>
<td>1:35</td>
<td>≥ 00:45</td>
</tr>
<tr>
<td>Final setting time (h:min)</td>
<td>4:40</td>
<td>≤ 10:00</td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 days</td>
<td>28</td>
<td>≥ 15</td>
</tr>
<tr>
<td>7 days</td>
<td>34</td>
<td>≥ 23</td>
</tr>
</tbody>
</table>

Table. 3 Gradation and Aggregate

<table>
<thead>
<tr>
<th>Sieve size (mm)</th>
<th>Percentage passing %</th>
<th>Limit of IQS No.45/1984, zone (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4.75</td>
<td>97</td>
<td>90-100</td>
</tr>
<tr>
<td>2.36</td>
<td>77.9</td>
<td>60-95</td>
</tr>
<tr>
<td>1.18</td>
<td>51.6</td>
<td>30-70</td>
</tr>
<tr>
<td>0.6</td>
<td>30.3</td>
<td>15-34</td>
</tr>
<tr>
<td>0.3</td>
<td>10.9</td>
<td>5-20</td>
</tr>
<tr>
<td>0.15</td>
<td>2</td>
<td>0-10</td>
</tr>
</tbody>
</table>

Table. 4 Physical and chemical properties of fine aggregate

<table>
<thead>
<tr>
<th>Properties</th>
<th>Values</th>
<th>Limits of IQS No.45-1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfite % (SO₃)</td>
<td>0.18</td>
<td>≤ 0.5%</td>
</tr>
<tr>
<td>Fineness modulus</td>
<td>3.3</td>
<td>---</td>
</tr>
<tr>
<td>Absorption %</td>
<td>1.5</td>
<td>----</td>
</tr>
</tbody>
</table>
Table 5 Gradation of coarse aggregate

<table>
<thead>
<tr>
<th>Sieve size (mm)</th>
<th>Percentage passing %</th>
<th>Limit of Iraqi standards No. (45/1984)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>23.5</td>
<td>0-25</td>
</tr>
<tr>
<td>5</td>
<td>1.15</td>
<td>0-10</td>
</tr>
</tbody>
</table>

Table 6 Properties of HRWR

<table>
<thead>
<tr>
<th>Chemical content</th>
<th>Poly-carboxylate based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color, appearance</td>
<td>Brown liquid</td>
</tr>
<tr>
<td>pH</td>
<td>0.5±6</td>
</tr>
<tr>
<td>Density</td>
<td>1.03±0.02 g/cm³</td>
</tr>
<tr>
<td>Chloride content (%)</td>
<td>Without chloride ion</td>
</tr>
</tbody>
</table>

Table 7 Chemical properties of waste glass powder

<table>
<thead>
<tr>
<th>Oxide composition</th>
<th>Oxide content %</th>
<th>ASTM C618 class C limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>59.98</td>
<td>Min 50%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>SO₃</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>L.O.I</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>81.29</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 Physical properties of glass waste

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Glass</th>
<th>ASTM C618 class C limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fineness: Amount retained when wet-sieved on 45 μm (No. 325) sieve, %</td>
<td>10</td>
<td>Max 34</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>2.33</td>
<td></td>
</tr>
</tbody>
</table>

3.1 Detection and Monitoring the Corrosion by Half –Cell Potential

The electrochemical potential of the reinforcing steel was measured relative to a copper-copper sulfate electrode (CSE) according to ASTM C 876-99. Table 9 shows the relationship between half-cell potential and corrosion of steel embedded in concrete.

Table 9 Relationship between half –cell potential and corrosion of steel in concrete (ASTM C 876-99).

<table>
<thead>
<tr>
<th>Half-cell potential (mV)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> -200</td>
<td>Low probability of corrosion</td>
</tr>
<tr>
<td>-200 to -350</td>
<td>Uncertain corrosion activity</td>
</tr>
<tr>
<td>< -350</td>
<td>high probability of corrosion</td>
</tr>
</tbody>
</table>
4. Results and Discussion

4.1 Compressive Strength

The results of the compressive test for the SCM-C glass mixes are given in Fig. 3, results show that the compressive strength for SCM-C glass increased until 10% by weight cement percentage (10 G) and then beganed this percent to decline until cement percentage reached 15% by weight (15 G) but it still higher than that of the reference concrete at all curing ages.

For waste glass when grounded to a very fine powder, SiO₂ react chemically with alkalis in cement and form cementitious product (by producing C-S-H gel) that contribute to the strength development and durability, this is because voids are effectively filled and provide rise to dense concrete microstructure. However, beyond 15% the dilution effect takes over and the strength starts to drop [2].

The maximum increase in compressive strength was 30% for 10 G as compared to reference concrete at 240 days curing age.

Fig. 2 X-ray analysis for waste glass

Fig. 3 Effect of waste glass powder on compressive strength as compared with reference concrete

4.2 Flexural Strength

The flexural strengths test results for 10G-concrete are plotted in Fig. 4. The flexural strength for reference concrete was improved by the replacement of 10% by weight glass waste as well as it tend to increase with increasing curing age from 150 to 240 day.

The maximum flexural strength was 8.38 MPa at 240 days curing. This can be attributed to the fact that waste glass serves as a filler material. Similar observation was reported by Jain, et al. [9].
Fig. 4 Effect of 10% waste glass powder on flexural strength as compared to reference concrete

4.3 Permeability

The results for water absorption test or the porosity test for 10G–concrete and reference concrete at 150 and 240 day curing ages was plotted in Fig. 5.

The results indicated that the percentage of water absorption for 10G–concrete was less than that of reference concrete at all curing age and it decreased with increasing curing age from 150 to 240 day.

The maximum reduction of water absorption was 32.6% as compared with reference concrete. This may be attributed to the pozzolanic reaction for glass waste which can refine the pore structures, decreasing the connectivity and increasing the tortuosity for water transport, due to more fineness property of particles than cement and the capacity of the pozzolanic towards fixing Ca(OH)$_2$ generated during the reactions of hydration of cement [6][11].

These results are in agreement with the finding reported by Hongjian, et al. [7]. Fig. 6 Shows the water penetration depth for 10G–concrete and reference concrete at 150 days curing age. This figure shows that the depth of water penetration for glass-modified concrete was less than that for reference concrete. Blended glass waste as replacement of cement content improved the pore structure in the transition zone led to reducing water permeability. The results are in agreement with those obtained by Menadi, et al. [13] who reported that using a pozzolanic materials reduced the water depth penetration.

Fig. 5 Water absorption test

Fig. 6 water penetration for the concrete mixes
4.4 Half-cell potential

Half-cell potentials of steel results for 10G - concrete and reference concrete embedded in 3.5% NaCl solution are presented in Fig. 6. It is obvious that the potential of steel was shifted towards negative potential at the beginning of exposure period. The highly negative potential is not an indicative of high corrosion activity. It may be due to the higher moisture content of concrete after 28 days curing in tap water. The half-cell potential of steel increased with increasing moisture content of concrete [8]. The steel potential for 10G- concrete was (-316 mV) at 150 days curing which was lower than reference concrete (-338 mV) which was lower than reference concrete (-338 mV). This behaviour may be proposed on the basis of the better adsorptive capacity resulting in a barrier film difficult to break or penetrate by the corrosive chloride ions [15], then results are fluctuated and shifted to a more negative potential. At the end of 300 days of exposure the average potential in the reference concrete was -356 mV, while the average potential for 10G-concrete was 340 mV. It can be noted that all the 10G- concrete of steel potential was significantly below the threshold value stated by ASTM C876, Table 9.

Fig. 7 Potential versus time behavior for 10G– concrete as compared with reference concrete

5. Conclusion

This study concluded the performance of glass waste powder as supplementary cementitious materials to produce high performance concrete in conjunction with high range water reducing admixture and minimizing the threat of this type of solid wastes for environmental protection.

This study confirmed that the use of grinded waste glass improved:

- The compressive strength results for specimens with waste glass reveal that it increased up to 10% replacement of cement and further increasing of percentage.
leads to decrease in compressive strength of concrete. A significant improvement in compressive strength for 10% replacement of cement by 30% at age 240 days.

➢ The use 10% by weight of waste glass and as partial replacement of cement improve:
1. Flexural strength for reference concrete. It increased by 11.64 at age 240 days.
2. Improving water absorption at the age of 240 days. It decreased by 29.41%.
3. The depth of water penetration at the age of 150 days, it decreased slightly by 43.75%.
4. Reducing the corrosion of steel reinforcement by about 4%.

References

تأثير مخلفات مسحوق الزجاج كمادة إسمنتية تكميلية على خصائص الخلفة الخرسانية

أم. د. عبير إبراهيم الورد
قسم الهندسة البيئية/ جامعة بغداد

د. سهير كاظم الحبوبي
دائرة بحوث البناء/وزارة الاعمار والاسكان

رغدة عبد النبي رسن

الخلاصة:

يعتبر الزجاج مادة غير قابل للتلف ولأن عملية الطمر لا توفر حلا ولا تعد مخلفات الزجاج صديقة للبيئة وبالتالي دعت الحاجة إلى اعادة استخدام مخلفات الزجاج. تهدف هذه الدراسة إلى التحقق من جدوى استخدام النفايات الزجاجية المواد الإسمنتية التكميلية لإنتاج الخرسانة عالية الأداء تم إضافة الزجاج المطحون إلى المزيج الخرساني كبدائل جزئية للأسمنت بنسبة (5، 10، 15)٪ وزنيا. تم تجربتها على أنها مادة بوزولونية بالاقتران مع مجموعة عالية من مواد خفض الخليط الملمد المطوق. تم اختبار قوة الانضغاط في عمر 7 و28 و90 و150 و240 يوم. وأكدت الدراسة أن استخدام 10٪ من الزجاج المطحون ناعما يحسن من قوة الانضغاط وقوة الانحناء للخريسانة بنحو (30، 6.11)، 11.64٪ على التوالي عند عمر 240 يوم مقارنة بالخريسانة المرجعية كما ساهم بمقابل نفاذية الماء تحت الضغط بنحو 29.4٪ عند 240 أيام. في نهاية عمر 300 يوم من الغمر جزئيا في محلل كليوريد الصوديوم 3.5٪ كان جهد نصف الخلية للخريسانة المسلحة (المرجعية والخريسانة الزجاجية) (-356 و 340) ملي فولت على التوالي. وهذا يعني أن هناك إمكانية لإعداد الخرسانة عالية الأداء باستخدام الزجاج المطحون.

الكلمات المفتاحية: زجاج مطحون،مادة بوزولونية، خصائص القوة، النفعية، جهد نصف الخلية