

An Estimation Study on Fatigue transition Life of Nanocomposites Reinforced by AL₂O₃

Al-Alkawi Hussain Jasim Mohammed University of Technology, Electromechanical Eng. Department, Baghdad.

Ibtihal A. Mahmood, University of Technology, Mechanical Eng. Department, Baghdad.

Mamoon A. A. Al- Jaafari University of Al-Mustansiriya, Mechanical Eng. Department, Baghdad

Abstract:-

The behaviors of 2024Al/Al₂O₃ nanocomposite which wes fabricated by stir casting at 450r.p.m and casting temperature of 850°C have been examined under four points loading of rotating bending. fatigue test at room temperature (RT), humidity of 40% and fully revers stress ratio (R=-1). The trend of the fatigue properties obtained from the experimental tests showed an improvement in the fatigue strength and life compared to the metal matrix 2024Al alloy. The S-N curves were obtained and the equations of the nanocomposite which described the constant S-N curves were established based on Basquin power law equation for 0.2, 0.4, 0.6, 0.8 and 1.0wt. % Al₂O₃. The experimental results analysis revealed that the fatigue strength of nanocomposite are improved by 0.53%, and the fatigue transition life is increased by 16.02% compared to the metal matrix.

Keywords: - 2024Al/Al₂O₃ nanocomposite, nanoparticles, Al₂O₃, constant fatigue test.

Introduction

Nowadays, the metal matrix nano composites (MMCs) were used in different field of industries due to good mechanical and fatigue resistance ,These better properties make the MMCs attractive for

various applications in automobile, military industries and aerospace [1]. The manufacturing methods of MMCs are powder metallurgy, stir casting and ultrasonic casting etc. [2].

Four points bending fatigue test of Barium titan ate BaTiO₃-Al₂O₃ nano composites were carried out at stress ratio R=0.1 and 20 Hz frequency. It was found that the fatigue behaviors of the above composite exhibited high fatigue resistance compared to monolithic Al₂O₃.[3].

Sung-po et al [4] examined the three point bending fatigue of Al₂O₃/SiC composite .They found that the Al₂O₃ / SiC has good ability for retardation the cracks ad resulting high fatigue strength and lives

R.Senthilkumar et al (2015) [5] examined fatigue behaviors of the Micro and nanocomposites 2014Al alloy as a matrix with Al₂O₃ reinforced material .It was revaled that fatigue the properties improved due to enhancement of the mechanical properties of the composites.

Friction stir processing (FSP) method was used to prepare the 5052Al-Al₃Ti nanoparticles with different size of Al₃Ti.It was attained that the FSP

increased the fatigue endurance limit at 10^7 cycles by 28% and 32% compared to the annealed specimen under 2 and 3.5 vol. % of nanomaterial respectively [6].

It is observed experimentally that the MMCs have greater mechanical fatigue properties compared to the as cast metal .This finding play good role in enhancement the fatigue properties [7].

Metal matrix composite (Al-SiC) of 50 nanometers size of particles were fabricated for different vol. % of SiC in order to find the optimum fatigue improvement .It was found that the ductile fracture increased when the vol. % of reinforced material increased .[8].

50 nanometers reinforcement particles size of 10 wt. % were used to fabricated the nanocomposites based metal matrix 6061Al alloy .The composite and as cast metal 6061 Al alloy were tested under constant and cumulative fatigue in order to obtain the percentage of enhancement in the

fatigue life and strength .It was found that the fatigue strength of the composite is improved by 12.8% while the cumulative fatigue life is enhanced by 39.38% and 33.37% for high – low and low – high loading sequence respectively . [9]

The present work focus to determine the fatigue properties of $2024Al/Al_2O$ 3 nanocomposites for different wt. % of Al_2O_3 under room temperature and stress ratio R=-1.

Experimental work

Material

In this work aluminum alloy 2024 has been used as metal matrixfor nanocomposites and that the chemical composition is given as shown in **Table. 1**.

Table .1 the chemical composition of matrix metal

Metal	Si wt. %	Fe Wt. %	Cu Wt. %	Mn Wt. %	Mg Wt. %	Cr Wt. %	Zn Wt. %	Ti Wt. %	Others total Wt. %
2024Al alloy Standard [10]	0.5	0.5	3.8- 4.9	0.3- 0.9	1.2- 1.8	0.1	0.25	0.15	0.15
2024Al-alloy experimental	0.48	0.46	4.2	0.52	1.48	0.08	0.21	0.11	

The reinforcement material was chosen of high hardness and mechanical properties [10]. This material is Al_2O_3 of chemical.

composite wt% illustrated in **Table .2** With biggest radius less 10 nanometers

Table .2 chemical	composition of Al ₂ O	3 reinforcement	t material	[11].
- 00010 t= 011011110011		J		

Element	TiO ₂	Fe ₂ O ₃	CaO	Others	Alumina (α)
Wt.%	1.8	0.8	1.1	0.02	93

Experimental procedure

The Aluminum 2024 alloy metal matrix reinforced with various amount of wt. %Al₂O₃ (0.2, 0.4, 0.6, 0.8 and 1.0) wt. %Al₂O₃ have been fabricated using stir casting technique. The test rig which used to

manufacture the nano composites is given elsewhere [12].

The fatigue tests were conducted with rotating bending testing machine (UBM) given in **Fig. 1.**

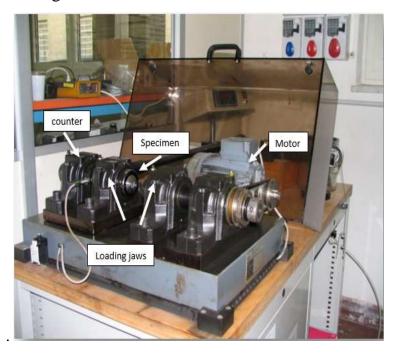


Fig .1 fatigue test machine

Specimen preparation

The material of the specimens was received as 15mm in diameter and 150mm in length from the cast moulds. The outer profile of the

specimens was then machined using CNC lathe, the fatigue specimen is shown in **Fig. 2** according to ISO 1143-2010[13].

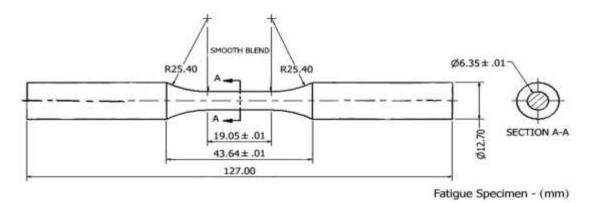


Fig. 2 fatigue specimen

The fatigue tests were down with the

following specifications:

Type of test: four points bending.

Room temperature: 24°C.

Relative humidity: 40%.

Testing frequency: 60Hz.

Stress ratio R=-1

Result and Discussion

The mechanical properties of 2024 Al alloy metal matrix and the 2024Al/Al₂O₃ composite with

different amount of Alumina obtained from Reference [13] shown in **Table. 3.**

Table .3 Mechanical properties 2024 Al an the 2024Al/Al₂O₃ nanocomposites [13]

Material Specimen series No.		U.T.S. (MPa)	Y.S. 0.2% offset (MPa)	Elongation (%)	AL ₂ O ₃ wt.%
Cast Al	1	177.9	83	10.5	0
Al/AL ₂ O ₃ (MMC _s)	2	184.6	89	9.3	0.2
Al/AL ₂ O ₃ (MMC _s)	3	210.1	101	7.8	0.4
Al/AL ₂ O ₃ (MMC _s)	4	184.4	89	9.4	0.6
Al/AL ₂ O ₃ (MMC _s)	5	182.6	85	9.6	0.8
Al/AL ₂ O ₃ (MMC _s)	6	180.7	84	9.8	1.0

S-N Curves

The constant S-N experimental results of six groups; 2024 Al as cast (series 1), 0.2wt% Al₂O₃ (series 2), 0.4 wt.% Al₂O₃(series 3), 0.6 wt.%

 Al_2O_3 (series 4), 0.8 wt.% Al_2O_3 (series 5) and 1 wt.% of Al_2O_3 (series 6) composites are given in **Table .4**.

Table .4 Experimental S-N curves of six groups of testing

No. of series	Material 2024 Al/Al ₂ O ₃	Applie d Stress (MPa)	No. of cycles to failure	Average no. of cycles
1a,1a ⁻ ,1a ,1a	2024 Al alloy Metal Matrix	150	64 , 66 ,65,62	64
1b,1b ⁻ ,1b ,1b		125	11985 , 11833 , 11864,10019	11425
1c,1c ⁻ ,1c		100	7014065, 6964231, 6977121,6413160	6842144
1d,1d ⁻ ,1d ,1d		90	142939642 , 141758922 , 140565777,139611832	141219043
2a,2a ⁻ ,2a ,2a	0.2 wt. % Al ₂ O ₃ Composite	150	67, 68, 67,70	68
2b,2b ⁻ ,2b		125	12370 , 12433 , 12357,13017	12544
2c,2c ⁻ ,2c ⁻ -,2c		100	7264539 , 7299470 , 7278614,8641211	7621033
2d,2d ⁻ ,2d ,2d		90	147415880 , 147703982 , 148786413,150983201	148722369
3a,3a ⁻ , 3a ,3a	0.4 wt. % Al ₂ O ₃ Composite	150	71,72,71,75	72

192

172				
3b,3b ,3b		125	12964, 13121, 12928,15631	13661
3c,3c ⁻ ,3c		100	7578833, 7613801, 7599827,9812714	8151293
3d,3d ⁻ ,3d		90	154453876 , 155586729 , 155923411,160721921	156671484
4a,4a ⁻ ,4a ,4a	0.6 wt. % Al ₂ O ₃ Composite	150	67,67,66,69	67
4b,4b ⁻ ,4b ,4b		125	12357 , 12355 , 12463,14911	13021
4c,4c ⁻ ,4c		100	7261750 , 7275515 , 7309681 , 9641311	7872064
4d,4d ⁻ ,4d ,4d		90	148070511 , 149281667 , 149976829,155641433	115723285
5a,5a ⁻ ,5a ,5a	0.8 wt. % Al ₂ O ₃ Composite .	150	66, 65, 66, 69	66
5b,5b ⁻ ,5b		125	12250 , 12190 , 12301,14011	12688
5c,5c ⁻ ,5c ⁻ -,5c		100	7111321 , 7083621 , 7209171 , 7301816	7176482

193

133				
5d,5d ⁻ ,5d ,5d		90	147370681 , 148211417 , 145321989 , 146776439	146776439
6a,6a ⁻ ,6a ,6a	1.0 Wt. % Al ₂ O ₃ Composite	150	65 , 64 , 65,68	65
6b,6b, 6b ,6b		125	12136 , 12011 , 11988 , 13711	12641
6c,6c ⁻ , 6c ,6c		100	7008131, 6897527, 6876714, 7011832	6948551
6d,6d ⁻ , 6d ,6d		90	143279161, 139417989, 140829171, 142791621	141579485

96 specimens were tested at room temperature and stress ratio R=-1. The results have been performed at as cast 2024 Al-alloy and various

reinforcements of Al_2O_3 and graphically plotted in the form of S-N curves which are presented in **Fig.3**.

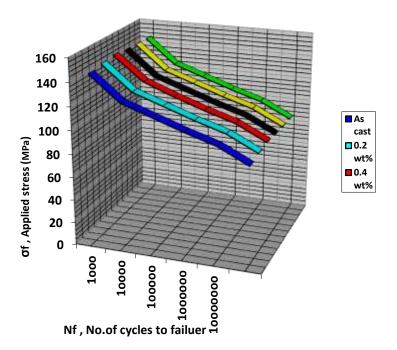


Fig.3 Experimental results S-N curves for metal matrix and five different nanocomposite .

The equation of power law regression is given by [14].

$$\sigma_f = A N_f^b \qquad \dots (1)$$

Where (σ_f)is the applied stress to failure.

 $\left(N_{f}\right)$ is the number of cycles to failure.

A and b are material constants which are the fitting parameters of the above equation

The fatigue parameters and strength for the above six groups can be illustrated in **Table .5.**

Table .5 S-N equations with calculated fatigue parameters for various wt. % Al₂O₃ nanoparticles

No. seri es	Wt. % Al ₂ O ₃	A	b	Equation σ _f =A N _f ^b	Stress at 10 ⁷ and 5*10 ⁸ cycle	Impro. in σe	(R ²)	σ_{fs} , fatigue strength at trasition life (10^4cycle)
1	As cast	173.4	-0.0349	$\sigma_{f}\!\!=173.4N_{f}^{-0.0349}$	98.798 86.189		0.9 8	125.732 MPa
2	0.2	173.86	-0.0349	$\sigma_f = 173.86 \ N_f^{-0.0349}$	99.06 86.418	0.27 % 0.265%	0.9 8	126.066 MPa
3	0.4	174.3	-0.0349	$= 174.3 \ N_f^{-0.0349} \sigma_f$	99.31 86.636	0.53% 0.518%	0.9 8	126.385 MPa
4	0.6	174.43	-0.035	σf =174.43 Nf ^{-0.035}	99.22 86.528	0.44 % 0.393%	0.9 8	126.363 MPa
5	0.8	173.78	-0.0349	σ f= 173.7 Nf ^{-0.0349}	99.01 86.338	0.24 % 0.172%	0.9 8	125.95 MPa
6	1.0	173.78	-0.035	$\sigma f = 173.78 \text{ Nf}^{0.035}$	98.85 86.205	0.07 % 0.018%	0.9 8	125.892 MPa

Fatigue test showed a significant improved in fatigue strength in all composite investigated. The as cast alloy represents lower fatigue strength than the composite. The

highest enhancement in fatigue strength was observed at 0.4wt $\% Al_2O_3$ as 0.53% and 0.518% for 10^7 and $5*10^8$ cycles respectively [15] [16]. The lowest enhancement

was occurred at 1.0 wt. % Al₂O₃ compared to the as cast 2024Al alloy .Akio et al [17] examined the nanocomposite specimen under constant fatigue test and they conclude that the nanomaterial play good role in improvement fatigue of Al alloys. Alalkawi et al [9] found

that the endurance fatigue limit at 10⁷ cycles is enhanced due to addition of 10 wt. % Al₂O₃ to the 6061 Al alloy. This improvement was 12.28% i.e., the fatigue strength of as cast was 87.3 MPa raised to 99.53 MPa for the nanocomposite

Fatigue life and nanomaterial (Al₂O₃)

For high cycle fatigue (HCF) regein, the number of cycles required to produce fatigue is higher than 10^4 up to 10^7 sometimes to $5*10^8$ cycles for non-ferrous metals .While the low cycle fatigue (LCF) region defined as that the fatigue failure happens after a relatively small number of cycles . Fatigue failures for component of less

than 10⁴ cycles are considered to be low – cycle fatigue failure [19]. In this section, the improvement of fatigue transition life due to adding various wt. % of Al₂O₃ will discussed . **Table .6** gives the transition life between LCF and HCF regions for the composite based on the metal matrix 2024Al alloy.

Table .6 Transition life improvement percentage.

As cast	0.2 wt. % Al ₂ O ₃	0.4 wt. % Al ₂ O ₃	0.6 wt. % Al ₂ O ₃	0.8 wt. % Al ₂ O ₃	1.0 wt. % Al ₂ O ₃

Series 1	Series 2	Series 3	Series 4	Series 5	Series 6			
104	10791	11602	11539	10510	10371			
Improvement percentage (IP)								
	7.91	16.02	15.39	5.1	3.71			

The above calculation based on fatigue stress $\sigma_f = 125.732$ MPa corresponding to 10^4 cycles for metal

matrix 2024 Al alloy. **Fig. 4** shows the IP against the different amount of wt. % Al₂O₃.

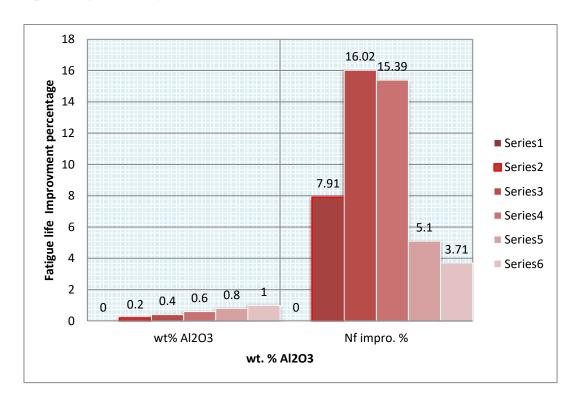


Fig. 4 Improvement percentage in the fatigue life (transition life) due to adding Al_2O_3 nanoparticles.

It is clear that the fatigue transition life enhanced and the maximum enhancement occurred at 0.4 wt. % Al₂O₃ but all the percentage amount of Al₂O₃ added improved the transition life in comparison with the based metal matrix alloy. These improvements may be coming from the following:

- 1- The high Ultimate stress, Yield stress and Hardness of the reinforced particles itself lead to improved fatigue transition life and strength [20].
- 2- Good dispersion of Al₂O₃ in the nanocomposite works to improve the mechanical and

Conclusion

This section lists the major conclusion to be drawn from the current research

1. The purpose of application the nano Al_2O_3 was aimed at maximizing the mechanical

- fatigue characterization leading to enhance fatigue transition life [21].
- 3- The homogeneousity of reinforcement particles and little porosity leads to raise the strength and life of composites [22].
- 4- High bounding between metal matrix and Al₂O₃ made the composite of high mechanical properties and substance the applied load greater than the metal matrix which give long fatigue life compared to the metal matrix [23].

characterizations and fatigue life.

2. Experimentel analysis indicated that fatigue strength or fatigue endurance limit at 10⁷ and 5*10⁸ improve with the increase in wt.% of Al₂O₃. But the maximum endurance limit

- is occurred at 0.4wt% Al₂O₃ composite.
- 3. The fatigue transition lives of all the composites were enhanced compoared to the metal matrix. The maximum improvement is observed in composite including 0.4wt%
- Al₂O₃ by 16.02% improvement percentage (IP).
- 4. The fatigue transition lives of all the composites were increased by the following improvement percentage ,7.19, 16.02, 15.39, 5.1 and 3.71 crossponding to (0.2, 0.4, 0.6, 0.8 and 1)wt% Al₂O₃.

References

- 1- Xiao-Hui Chen ,Hong Yan ((soild-liqud interface dynamic during solidification of Al 7075-Al₂O₃ np based metal matrix composite)) Materials and design 94 , 148 158 , (2016).
- 2- Hai Su , Wenli Gao , Zhaohui Feng , Zheng Lu ((processing microstructure and tensile properties of Nano-size Al₂O₃ particle reinforced aluminum matrix composite)) Materials and design 36 , 590-596 , (2012) .
- 3- Sirirat R. ,Yukio M. , Yoshihara M . ((fatigue behavior of Al_2O_3 - based composite with BaT_iO_3 piezoelectric phase))

- International J. of fatigue vol. 28(10), 1413-1419, (2006).
- 4- Sung-Po Liu , kotoji Ando ((Fatigue strength characteristics of crack-healing materials Al_2O_3 /SiC composite ceramic and monolithic Al_2O_3)) Journal of Chinese Institute of Engineers vol. 27 , issue 3 , (2004) .
- 5- R.Senthil kumar , N.Armkumar , M.Manzoor H . ((A comparative study on low cycle fatigue behavior of Nano and micro Al_2O_3 reinforced AA2014 particles hybride composite)) science in physics ,vol. 5 , 273 280 , (2015)
- 6- P.SahandiZ., F.Khodabakhshi, A. Simchi, A.H.Kakabi ((

- Fatigue fracture of stir processed $Al Al_3Ti MgO$ hybrid nanocomposite)) International journal of fatigue , vol. 87, 266 278, (2016).
- 7- R.H.Jones, C.A.Lavender, M.T. Smith (Yield strength fracture Toughness relationships in metal matrix composite) scripta metal, 21, 1565, (1987).
- 8- H.G.Yazdabadi , A.Ekrami , H.S.Kim , A.Simchi ((An Investigation on the fatigue fracture of p/m Al-SiC nanocomposite metallurgical)) Materials Transaction , vol. 44 A , (2013) .
- 9- Al-alkawi H.J.M., Alhamadany Aseel A., Alasadi Abbas A., ((Influence of nanoreinforced particales Al₂O₃ on fatigue life and strength of Alumium based metal matrix composite)), J. of Al—kawarizmi college, to be published (2017).
- 10- Alcoa 2024, data sheet , accessed October 13, 2006.
- 11- Mohsen O.S. ,Ali
 Mazahery ((Aluminum –
 matrix nanocomposites
 swarm-intelligence
 optimization of the
 microstructure and mechanical
 properties)) ,Material and

- Technology 46, 6, pp.613 619, (2012).
- 12- Al-alkawi H.J.M., Ibtihal A. Mahmood ,Mamoon A.A. Al-jaafari , ((studying the effect of different wt % Al₂O₃ nanoparticales of 2024 Al composite on mechanical properties)) Al kawarizmi J. to be published (2017) .
- 13- I.S.O ,standard number 1143, 2010.
- ,Anastasios P. Vassilopoulos ,Thomas keller ((Ahybrids S-N formulation for fatigue life modeling of composite materials and stractures)) journal elesvier .locate .compositesa ,pp 1-9 (2011).
- 15- Abdul JabarH.Ali ((Anon linear damage model for fatigue life prediction of fiber reinforced polymer composite lamina at different temperature)) ph.D thesis , Mech. Eng. Dep. University of Technology.
- 16- Robert L. Mott ((machine elements in mechanical design)), Mc Grow Hall, fourth Edition (2005).
- 17- K.Akio ,O.Atsushi , K.Toshiro , T.Hiroyuki ((Fabrication process of metal processed by vortex method))

- Journal of Japan Inst. Light metal , 49 , pp 149 154 , (1999) .
- 18- K.J.Miller ((Materials science perspective of metal fatigue resistance)) Materials Science and Technlogy , vol 9 , pp 453 462 , (1993) .
- 19- Bharath V. , Mahadev N. , V. Auradi ((Preparation characterization and mechanical properties of Al_2O_3 reinforced 6061 Al particular MMCs)) International Journal of Enginering Resarech and Technlogy (IJERT) , vol 1 , issue 6 , (2012) .
- 20-Manoj S., D. Deepak Dwivedi, Lakhvir S., Vikas C. ((Development of aluminum based Silicon Carbide for ticulate metal matrix Journal of composite)) minerals materials and characterization Enginering, vol 8, No. 6, pp. 455 - 467, (2009).

- 21- Rasesh K.B., Sudhir K., S. Das, ((Fabrication and characterization of 7075 Al alloy reinforced with SiC particales)), Intem. Journal of advanced manufacturing Technlogy 65, pp. 611-624, (2013).
- 22- Rajesh K.B. ,Sudhir K. ,S. Das ((Fabrication and characterization of 7075 Al.alloy reinforced with SiC particles)) ,Intern. J of advanced manufacturing technology , 65 , 611 624 , (2013).
- Ajay S., Love K., 23-Mohite C., Om N., Pallav S., Piyush S. B., Chandra K., Som A. ((Manufacturing of AMMCs Wing stir casting process and testing its mechanical properties)) , International Journal Odv .Eng. Tech., pp. 26 - 29, (2013).

دراسة تقيمية لعمر الكلال الانتقالي للمركبات النانوية المقواة بأوكسيد الالمنيوم

ا.د حسين جاسم محمد العلكاوي

ا.م.د ابتهال عبد الرزاق محمود

المهندس مامون على احمد

الخلاصة: ـ

تم فحص سلوك الكلال للمركبات النانوية عند التحميل الرباعي الدوار في درجة حرارة الغرفة وعند رطوبة 40% ونسبة الجهاد -1 ، تم اضافة المادة النانوية الى سبيكة الالمنبوم 2024 وذلك بطريقة السبك بالتحريك عند 450 دورة في الدقيقة ودرجة حرارة 850 درجة مئوية و بنسب وزنية 2.0% 0.4% 0.0%

الكلمات المفتاحية: - الحبيبات النانوية، فحوصات الكلال الثابتة .2024Al/Al₂O₃ المركبات النانوية Al₂O₃