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Abstract— Two—plane balancing procedure is usually adopted to balance long rotors using both vibration
amplitude and phase data. This paper presents a new mathematical analysis of two—plane balancing method
for long rotors using vibration amplitude data only. This method requires eight test runs with two balancing
planes nearby the bearings. The tests are performed by connecting a known trial mass to eight different
positions individually; four at each plane, where each position being advanced (90°) from its previous. In
this study, a comparison has been performed between the new mathematical analysis and another traditional
analysis presented in a previous study. Firstly, two computer programs based on both analyses have been
written using C** Language in order to compute the magnitudes and locations of the required balancing
masses. Secondly, the comparison has been made using balancing simulator for rigid rotors where different
sizes of rotors at different rotation speeds have been tested. This study showed that the two—plane balancing
method based on the new analysis was always capable of performing a very high grades of balance while
traditional analysis showed an observed restriction in achieving a good quality of balance for the rotors been
tested.

Keywords—Balancing without phase data, balancing of long rotors, two—plane balancing using vibration amplitude

data.

1. Introduction

Vibration and accompanying problems such as noise and
fatigue are considered as the main factors that decrease the
performance of rotating machines, so the efforts to
overcome such vibration are becoming more essential.
Vibration in rotating machines is a result of different
mechanical drawbacks including mass unbalance,
coupling misalignment, components looseness and other
many reasons. However, mass unbalance is probably the
most common source of extreme vibration in rotating
machines.

Over the last eighty years, different balancing methods
have been presented to minimize vibration of rotors caused
by unbalance. The initial research that dealt with rotor
vibration due to unbalance was traced back to the 1930s.
Thearle [1] formulated a two—plane technique using the
influence coefficients method. Goodman [2] presented the
least—squares algorithm, an extension of the influence
coefficients method, for balancing of flexible rotors using
amplitude and phase data collected from multiple speeds
and measuring positions. Kang et al. [3] presented a
modified influence coeffcients method to balance
asymmetrical rotors such as crankshafts using soft—

pedestal machines. The accuracy and validity of the
modified method were checked both theoretically using
compueter simulation and practically through several
balancing experiments on real crankshafts. The modified
approach yielded a better quality of balancing than the
conventional balancing method did. Sinha et al. [4]
estimated a method to balance a rotor—bearing—foundation
system using amplitudes and phases data measured at the
bearing pedestals. The proposed method was applied to an
experimental test rig where it showed excellent results. Al—
Taee [5] presented both graphical and mathematical
analyses for two—plane balancing of rigid rotors and other
two mathematical analyses for three—plane balancing of
flexible rotors. Firstly, the computer programs that related
to the mathematical analyses were written then their
validity on an experimental test rig of a long rotor was
successfully checked.

On the other hand, in some applications, balancing must
be performed without using phase data, this could be
simply because of absence of phase measuring devices or
because the machine rotating parts needed to be balanced
are completely bounded or not easy to be reached. In such
cases, a high quality of balance can be obtained using
vibration meter only. Wilcox [6] presented a graphical
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solution for single—plane balancing using amplitude data
taken from five runs, one due to original unbalance and
four due to trial mass. The method of Wilcox is also known
as the four runs method.

In addition, analytical studies of balancing using amplitude
only has had several extensions. Nisbett [7] presented a
mathematical analysis of the two—plane balancing of rigid
rotors using amplitude data only. It stated that the
technique can be used in the field efficiently although it
takes eight trial mass runs. Al-Taee [8] significantly
simplified the graphical solution of the four runs method
by presenting a new mathematical analysis. The validity of
the new analysis was successfully experimented on a disk
shaped rotor. Ali et al. [9] presented a mathematical
analysis of the graphical single—plane balancing method,
also known as the three runs method, using amplitude data
taken from runs of original unbalance and three trial mass.
The validity of their analysis was investigated on an
experimental test rig of a narrow rotor where excellent
results were obtained.

Al-Abbood [10] presented a new single—plane balancing
method without phase data using only two runs of trial
mass. The method's validity was checked on a crankshaft
of a domestic electrical generator. The proposed method
was very active, practical and saving a lot of cost, time and
efforts since just two runs of trial mass are required. Han
et al. [11] presented a virtual prototyping technology to
simulate mass unbalance and examine dynamic balancing
of rigid rotors. The contribution of thier work was to
provide a new way to verify balancing method and analyze
balancing error without a real test. The results validated the
correctness and feasibility of the proposed method.
Sampaio and Silva [12] presented two virtual experiments
that can be used to study field balancing of rigid rotors and
to train its implementation. The simulator can provide
surprisingly accurate vibrations data for static and dynamic
unbalance. The software has the ability to generate
reasonable vibration data that makes easier to understand
unbalance symptoms and balancing methods without the
need for any physical models.

This paper presents a new mathematical analysis for the
two—plane balancing procedure of long rotors using
vibration amplitude data only. The remainder of this paper
is organized as follows. Section 2 presents the new
mathematical analysis. The simulation work is given in
section 3 where the author compared his proposed analysis
with a traditional analysis of a previous study. Section 4
presents the results and discussion. Finally, the
conclusions are presented in the last section.

2. Mathematical Analysis

A sketch of one of the long rotors that will be balanced
using two—plane algorithm is shown in Fig. 1.

In the two—plane balancing method, each plane requires
four individual runs of trial mass at four angles; 0°, 90°,
180° and 270° where the reference or zero degree is
randomly chosen.

Balancing plane 1 Balancing plane 2

Bearing A Bearing B

Figure 1: Sketch of a long rotor

Using these measurements, the four vector diagrams
related to both planes can be constructed. Fig. 2 shows one
of the four diagrams, which is related to bearing A due to
trial mass runs at plane 1.

0

Figure 2: Vector diagram of bearing A due to trial mass
runs at plane 1

From triangles 012, 013, 014 and 015 in the vector diagram
shown in Fig. 2 and by using cosine law, it can be found
out that [7, 8]

(A5)? = (A)* + (AD* +2x Ax Al x cos (1)
(45)2 = (A + (AD? +2x AX Al X sing,  (2)
(Aigo)? = (A)? + (AD)? — 2 X AX A; X cos ¢, (3)
(A370)* = (A)? + (AD? =2 X AX Ay X sinp,  (4)

where A%, A3, Algo and AL, are the vibration amplitudes
at bearing A due to trial mass mounted on plane 1 at angle
0°, 90°, 180° and 270° respectively, A is the vibration
amplitude at bearing A due to original unbalance of the
rotor, A} is the vibration amplitude at bearing A due to trial
mass effect only, mounted at any angle on plane 1, ¢, is
the phase angle of original unbalance at bearing A.

Now, by subtracting Eq. (3) from Eq. (1) and Eq. (4) from
Eq. (2) then dividing the obtained equations by each other,
the value of ¢, can easily be found as:

b, = tan~! [(Aéo)z—u%m)z] )

(48)*~(algo)”

The phase angle ¢, can also be written as:
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¢a — tan—l [(Ago)z_(A%m)z (6)

(43)"~(43g0)”

where A3, A3,, A%g, and A3, are the vibration amplitudes
at bearing A due to trial mass mounted on plane 2 at angle
0°,90°, 180° and 270° respectively.

The value of A} can be written as a function of A} and Alg,
or as a function of A3, and A}, such that:

Al [(A(l))z—(A%SO)Z] _ [(Aéo)z—(A%m)z %)

4xAxcos ¢pg 4xAxsin g

Similarly, A? can be derived from its related vector
diagram as a function of A% and AZg, or as a function of
A%, and A3, such that:

a2 = |48 ~(tao) ] _ [mso) ~(430) ®

4xAxcos ¢pg 4xAxsin ¢pg

where A? is the vibration amplitude at bearing A due to
trial mass effect only, mounted at any angle on plane 2.

In the same way, the three main values which belong to
bearing B, namely ¢,,, B} and B can be derived as:

1 [(B30) = (BYr0)
¢y = tan [(Ba)z—w;so)z 2
or

1 [(B30) = (B%r0)”
by = tan [(35)2—(3%80)2 (10)

where ¢, is the phase angle of original unbalance at
bearing B, B3, Bl,, Bis, and B},, are the vibration
amplitudes at bearing B due to trial mass mounted on plane
1 at angle 0°, 90°, 180° and 270° respectively, BZ, BZ,,
BZg, and BZ,, are the vibration amplitudes at bearing B
due to trial mass mounted on plane 2 at angle 0°, 90°,
180° and 270° respectively.

The value of B} can be written as a function of B} and Big,
or as a function of B, and B3, such that:

B = [ =tetn)] _ [(oh) ok an

4xB*cos ¢p 4xBxsin ¢y

where B} is the vibration amplitude at bearing B due to
trial mass effect only, mounted at any angle on plane 1.

Similarly, the value of B? can be written as a function of
B2 and B%g, or as a function of B2, and BZ,, such that:

B? = (B5) —(Bis0) ] - [(390) = (B370) (12)

4+B*Ccos ¢p 4xB*sin ¢p

where B? is the vibration amplitude at bearing B due to
trial mass effect only, mounted at any angle on plane 2.

The aim of calculating the values ¢, ¢}, AL, A%, B} and
B? is ultimately to determine the balancing masses M, and

M, and their locations on planes 1 and 2 respectively
which will eliminate the original unbalances at both
bearings.

Reference [7] presented a different concept regarding
values ¢g, ¢p, AL, A2, B} and B?. In addition, values A},
A%, B} and B? have been expressed by squared roots which
leads, in many cases, to imaginary values and ends up with
infinite solution. The main advantage of the new
mathematical analysis is to overcome this problem and to
get the exact solution for mass imbalance under any
condition as the values A}, A2, B} and B? in the new
analysis are free of any roots as shown in Eqs. (7), (8), (11)
and (12) respectively. In this paper, a simulation
comparison between both analyses has been made to know
the effect of this difference between these two sets of
values on balancing process where two C** computer
programs for both analyses have been developed.

The purpose of the trial mass runs is to find the correlations
between trial and balancing masses. These correlations can
be simply written in x and y components as [7]

Mgy = Cox X Myyiar (13)
Mgy = Coy X Myriqy (14)
Mpx = Cpx X Miriq (15)
Mpy = Cpy X Myyiar (16)

where My,.q is the trial mass, Cqy, Cqy, Cpy and Cp,, are
defined as the correction factors to be applied to the trial
masses to get the four components masses required for
balancing, My, Mgy, Mp, and My,,. The four correction

factors Cyy, Cay, Cpx and Cpy, can be written as [7]

B*A%*cos qbb—A*Btz*cos da
Cax = a7

1.2 aZ.pl
Ap*Bp —Af*Bg

_ B*A%*sin ¢b—A*B[2 *Singg

Cay A%*B?—A%*Btl (18)
—Ax - xAL

Cbx — Axcos d;;% Cax*At (19)
—Axsi —Cay*Al

Cyy = o fmerst 20)

4¢

The four component masses required for balancing can be
determined now from Egs. (13), (14), (15) and (16)
respectively. In order to place these masses at their correct
locations, x component should be placed at angle 0° if
positive and placed at angle 180° if negative whereas y
component should be placed at angle 90° if positive and at
angle 270° if negative. However, in this work, the
computer programs for both analyses have been developed
so that these four component masses can be expressed into
their resultant balancing masses M, and M, and their
positions on the rotor.

3. Simulation Work

The aim of simulation work is to carry out the comparison
between the new mathematical analysis presented in this
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paper and the traditional mathematical analysis presented
in [7]. The simulation has been performed using balancing
simulator for rigid rotors prepared by CBM Apps [13] as
shown in Fig 3.

Plane 1 Front view Plane 2 Side view

Trial / Balancing masses 270°
& |
== \

| Bearing
B

Rotor mass: 432.9

_[ Set upT Balance | Log and report

Rotor Geometry Operating conditions
Mounting | Between bearings 2 Operating speed [rpm] 3000 75
Radius o 40cm Turning sense Ccw v
e v 200 cm Initial unbalance Dynamic -
Bearing separation 9, 220cm
Mount stifiness -
Axial position (9 10¢cm Soft Rigid
Units
Length |cm ». Mass | gram i

Figure 3: Panel of rotor balancing simulator

The panel of the simulator shows both front and side views
of the rotor, rotor mass, rotor geometry including
mounting type (between bearings or overhang), radius,
width (length) and axial position from Bearing A. The
panel also contains the operating conditions of the rotor
which include speed, turning sense (clockwise or
counterclockwise direction), type of initial unbalance
(static or dynamic) and mount stiffness (soft or rigid). In
addition, the units of length and mass of rotor could be
chosen in SI or British system. Balancing process is
performed through Balance button where trial and
balancing masses can be mounted on planes of balancing.
The final report of balancing process which includes
vibration values for both bearings before and after
balancing can be obtained through Log and Report button.
Finally, it should be mentioned that this simulation is
based on ISO 10816 standard.

4. Results and Discussion

Table 1 shows the measured vibration values at bearings
before and after balancing for different rotor sizes at
different speeds using the CBM Apps simulation software.
As the simulator is based on ISO 10816 standard, it is
designed to always mimic an imbalance state of rotors
when it runs so no masses were needed to be added to
create an initial imbalance conditions which gives the
balancing process more reliability. Obviously, Table 1
confirms that the new mathematical analysis, gray shaded
cells, showed that vibration values due to original
unbalances at both bearings have dropped dramatically
after balancing for the whole nine tested rotors where an
improvement range of 80.4% — 97.3% has been obtained.
On the other hand, the traditional analysis, white cells in
Table 1, showed an observed restriction in achieving a
good quality of balance for the rotors been tested where

just one rotor out of the nine has been successfully
balanced, five rotors cannot be balanced and end with no
solution due to imaginary roots, and three rotors became
worse through increasing of vibration after balancing.

Table 1: Measured vibration values at both bearings
before and after balancing for different rotor sizes at
different test speeds using balancing simulator

Vibration value at Vibration value at
bearing A bearing B
RPM mm/s mm/s
BB | AB | PI BB | AB | PI
First rotor size: L=2,D=0.4,S=2.2 M =138
047 | 95.11 0.70 | 92.18
1500 9.61 NS NS 8.95 NS NS
047 | 95.81 0.74 | 92.43
3000 | 11.22 NS NS 9.78 NS NS
1.63 85.5 1.38 | 88.51
>000 | 11.24 0.19 | 98.31 12.01 0.71 | 94.09
Second rotor size: L=2.4, D=04,S=2.6, M= 164
1.05 | 90.95 0.32 | 97.31
1500 | 11.61 1.43 87.68 11.88 22.8 NI
0.86 | 93.13 2.42 | 80.79
3000 | 12.53 2437 NI 12.60 248 NI
0.40 | 96.65 1.83 | 80.40
50001 11.95 24.09 NI 9.34 19.53 NI
Third rotor size: L=3,D=0.6, S=3.2, M =382
1.04 | 89.89 1.10 | 89.24
1500 | 10.29 NS NS 10.23 NS NS
1.26 | 88.72 1.00 | 91.23
3000 | 11.17 NS NS 11.40 NS NS
1.54 | 87.80 2.00 | 82.38
5000 | 12.62 NS NS 11.35 NS NS

5. Conclusions

This study presented a new mathematical analysis of two—
plane balancing method for long rotors based on
amplitudes data only. This analysis has been examined and
virtually compared with a traditional analysis presented in
a previous work using balancing simulator for rigid rotors.
The comparison showed that the new analysis presented in
this study was capable of achieving a high quality of
balance for the rotors been tested from the first balancing
attempt. On the other hand, the traditional analysis showed
an observed restriction represented in many cases by
imaginary roots which ends up with no solution or even
worse through increasing of vibration value. The main
advantage of the new mathematical analysis is its ability to
overcome this problem through presenting a new
expression without roots. It can be concluded that although
the traditional analysis showed its limitations to balance
long rotors, it is still able to balance relatively short or disk-
shaped rotors.
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Nomenclature

L Length of rotor (m)

D Diameter of rotor (m)

S Span between bearings (m)

M Mass of rotor (kg)
Abbreviations

RPM Revolution per minute

BB Before balancing

AB After balancing

PI Percentage improvement

NS No solution (imaginary root)

NI No improvement (vibration increased

after balancing)
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