Vibration Control of Clamped Affected by Dynamic Load With Electromagnetic Actuator

  • Salah Haji Abiduan Department of Mechanical Engineering Institute of Technology -Baghdad Middle Technical University Baghdad, Iraq
  • Hayder Sabah Abd Al-Amir Department of Mechanical Engineering Institute of Technology -Baghdad Middle Technical University Baghdad, Iraq
  • Wajdi Sadik Aboud Department of Prosthetics and Orthotics Engineering, Faculty of engineering, Al-Nahrain University. Baghdad, Iraq
Keywords: harmonic moving load, nonlinear vibration isolator, electromagnetic actuator, and PID controller

Abstract

The dynamic behavior of fixed-fixed beam, resting on a nonlinear vibration isolator at middle point and subjected to dynamic load, is investigated. The vibration isolator consists of nonlinear spring and nonlinear damper. The beam is modeled as Euler beam and in order to find the nonlinear equations of motion, the method of assumed-mode is used. A moving force with different linear velocities is subjected along the beam length. In addition, the magnitude and direction of the force are varied. The effect of the linear velocities and frequencies of dynamic load on the isolation of the beam are discussed. Furthermore, Proportional-Integral-Derivative (PID) controller and electro-magnetic actuator are integrated to the system to achieve an optimal elimination of the beam deflection. The optimal output feedback PID gains are obtained using the pole placement method, and then further tuned by gradient descent optimization. The proposed controller showed a significant elimination of the beam deflection compared to non-controlled system.

Published
2018-01-09
How to Cite
Haji Abiduan, S., Sabah Abd Al-Amir, H., & Sadik Aboud, W. (2018). Vibration Control of Clamped Affected by Dynamic Load With Electromagnetic Actuator. Association of Arab Universities Journal of Engineering Sciences, 25(1), 170-182. Retrieved from https://jaaru.org/index.php/auisseng/article/view/117
Section
Articles